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Abstract

This paper proposes a new level set method for structural shape and topology optimization using a semi-implicit
scheme. Structural boundary is represented implicitly as the zero level set of a higher-dimensional scalar function and
an appropriate time-marching scheme is included to enable the discrete level set processing. In the present study, the Ham-
ilton–Jacobi partial differential equation (PDE) is solved numerically using a semi-implicit additive operator splitting
(AOS) scheme rather than explicit schemes in conventional level set methods. The main feature of the present method
is it does not suffer from any time step size restriction, as all terms relevant to stability are discretized in an implicit manner.
The semi-implicit scheme with additive operator splitting treats all coordinate axes equally in arbitrary dimensions with
good rotational invariance. Hence, the present scheme for the level set equations is stable for any practical time steps
and numerically easy to implement with high efficiency. Resultantly, it allows enhanced relaxation on the time step size
originally limited by the Courant–Friedrichs–Lewy (CFL) condition of the explicit schemes. The stability and computa-
tional efficiency can therefore be greatly improved in advancing the level set evolvements. Furthermore, the present method
avoids additional cost to globally reinitialize the level set function for regularization purpose. It is noted that the period-
ically applied reinitializations are time-consuming procedures. In particular, the proposed method is capable of creating
new holes freely inside the design domain via boundary incorporating, splitting and merging processes, which makes
the final design independent of initial guess, and helps reduce the probability of converging to a local minimum. The avail-
ability of the present method is demonstrated with two widely studied examples in the framework of the structural stiffness
designs.
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1. Introduction

Several topology optimization methods have been developed in the past decades, such as the homogeniza-
tion method [10], the solid isotropic microstructure with penalty (SIMP) method [11], the evolutionary struc-
tural optimization (ESO) method [70], the level set-based method [60,2] and so on. These methods have gained
widespread popularity and are being applied to a wide range of engineering areas [1,12,22,46]. Both the
homogenization method and the SIMP approach can be regarded as the material distribution approach, while
the level set method is classified as a family of the geometry boundary method. In the context of the material
approach, a finite element mesh is fixed in the design domain and the topology optimization is applied to
achieve a black (material) and white (void) material configuration pattern in the design space. But it is well
known that the optimization problem established in this manner is usually ill-posed and may not converge
under a sequence of refining meshes. In this sense, the original problem needs to be relaxed by allowing inter-
mediate density materials. To guarantee a well-posed optimization, a suitable penalty [11] is applied to recover
the original binary-like material distribution and an additional numerical scheme such as the filtering method
[52,53] should be included to smear out the numerical instabilities [51]. For the geometry-based boundary
methods, they can be further classified into two different types, namely the explicit method and the implicit
method. The former is usually referred to the classic shape optimization while the latter is mentioned as
the level set method. In the classic shape optimization [54], the boundary is usually discretized into a set of
parameters which are applied to explicitly control the interface by moving the exterior and interior bound-
aries. A remeshing procedure is often used to reconstruct the geometrical model periodically when the design
boundary crossing elements. The explicit representation is only physically meaningful when the connectivity of
the boundary keeps unchanged during the optimization process. To make the topological change possible, the
bubble approach [21] or the topological derivative method [55] is usually used for adding new holes inside the
structure and then a new shape optimization is possible with a variable topology. The ESO method [70] is also
a popularly studied method for structural shape and topology optimization, which is based on an ad hoc cri-
terion to assess each element to the specified objective and subsequently remove those unnecessary elements
with the least contributions. In addition, the genetic algorithm (GA) is a widely applied structural optimiza-
tion method [59]. It is a stochastic search scheme based on the mechanisms of the natural selection and genet-
ics, which codes design variables by mimicking chromosome in biological nature. Perhaps, the ESO and GA
methods are more suitable for smaller-scale combined optimization problems with discrete or continuous
variables.

The level set method was originally introduced for tracking the evolution process of dynamic interfaces
with significantly topological changes in many areas [40,48,41]. It has experienced considerable development
with a wide range of applications including fluid mechanics, combustion, computer vision, image processing,
material science, and so on [44,58,14]. The success of the level set method can be attributed to the role of cur-
vature in numerical regulation so as to achieve a meaningful vanishing viscosity solution [43]. Recently, the
standard level set method has been successfully applied to structural shape and topology optimization prob-
lems [49,42,60,2]. Compared to the classic shape optimization, the level set-based optimization is really a fam-
ily of implicit shape optimization but it is capable of simultaneously implementing topological changes while
retaining a smooth boundary. Hence, the level set method is a numerical process of dynamic implicit interfaces
that combines the advantages of both the explicit boundary-based method and the material distribution-based
method. Sethian and Wiegmann [49] are among the first few researchers who introduced the level set method
[40,48] into structural optimization area, in which shape fidelity and topology changes are achieved in accor-
dance with the equivalent stresses along the boundary. Osher and Santosa [42] presented a level set method for
topological shape design of an inhomogeneous drum membrane, where the resonant frequency was optimized
as the objective function and a project gradient method was utilized to handle the constraint. Wang et al. [60]
established the speed vector in terms of the boundary shape and the variation sensitivity as a physically mean-
ingful link between the shape derivative [54] and the powerful level set method [48]. This method was further
developed as a ‘‘color” level set method to address shape and topology optimization in a multi-material design
domain [61]. Allaire et al. [2] independently proposed a similar level set method for structural shape and topol-
ogy optimization, where the front velocity was derived from a strict shape sensitivity analysis and the front
propagation was advanced via the Hamilton–Jacobi PDE, and followed by extended applications [3].
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The standard level set method [60,2] shows the potential in implementing many different types of struc-
tural shape optimization problems with drastic topological changes. However, there still remain some draw-
backs: (1) its final design highly depend on the initial guess as no mechanisms have been included to
generate new holes inside the design domain and (2) the time step must be small enough to satisfy the
CFL condition, leading to a time-consuming optimization process with hundreds of iterations. To enable
the introduction of new holes, the topological derivative method [13,28] has been incorporated into the level
set method for the sake of generating new holes. The notion of topological derivative may be initially intro-
duced by [55] to measure the influence of the ‘‘nucleation” of small holes inside the design domain. Novotny
et al. [39] proposed an alternative definition for the topological derivative and introduced a shape sensitivity
analysis method based on the concept of shape derivative [29,54]. Although the level set methods with the
topological derivative can produce new holes during optimization process, but it is difficult to switch mean-
ingfully between the topological and the shape derivatives [62,4]. To cut the computational cost relevant to
the CFL condition, several alternative level set methods have been developed without directly solving the
Hamilton–Jacobi PDE. Such as, Belytschko et al. [8] proposed a level set method for topology optimization
with implicit function and regularization, where the node values of the level set function are directly
updated with an ad hoc scheme within a narrow band of the zero level set. Haber [24] employed a variant
level set method for structural eigenvalue shape optimization combining the sequential quadratic program-
ming method with a multilevel grid refinement method [6] to advance the implicit shape boundaries.
Amstutz and Andra [5] proposed a level set-based topology optimization method with the concept of topo-
logical gradient. Chen et al. [16] combined R-functions with B-spline functions to present an implicit shape
optimization method with parametric control and topological changes. Wang et al. [64,65] proposed an
implicit free boundary parameterization method for shape and topology optimization. Wei and Wang
[66] presented an alternative scheme for structural shape and topology optimization with the piecewise con-
stant level set method [57,30], which is perhaps more promising in multi-phases topology optimization prob-
lems. Based on the contributions of [38,63], Luo et al. [33] presented a new level set method for compliant
mechanism designs using the compactly supported radial basis function. In doing so, the original more dif-
ficult shape and topology optimization problem driven by the Hamilton–Jacobi PDE is fully parameterized
into an easier size optimization of the expansion coefficients, to which many well-founded gradient-based
mathematical programming methods such as [56] and optimality criterion based algorithms such as
[45,71] can be applied.

The aim of this study is to introduce an alternative level set method for the level set equations with the addi-
tive operator splitting (AOS) scheme instead of the explicit schemes. The concept of the semi-implicit AOS
algorithm originally rooted from the splitting up method [31] and nonlinear diffusion filtering problems in
image analysis [67]. It can be found that many approaches for nonlinear diffusion filtering are based on the
finite difference discretization by means of explicit schemes [68]. Compared to the time steps of explicit
schemes limited by a restrictive CFL condition (more rigorous for the higher-dimensional cases) [26], the
semi-implicit discretization to be presented satisfies all discrete scale-space criteria for all time steps. It can
be implemented easily in arbitrary dimensions and reveal a computational complexity and memory require-
ment being linear in the number of grid points [68]. We are trying to combine the semi-implicit AOS scheme
[31,67] with the standard level set method [48,41] to develop a new level set method for structural shape and
topology optimization. In doing so, some unfavorable numerical features in the conventional level set method
[32,33], such as the CFL condition, the reinitialization procedure and the velocity extension algorithm are
expected to be reasonably avoided. In particular, new holes can be created freely inside the material domain
which helps the final design get rid of trapped local optimums. In addition, the suggested method is mathe-
matically well-established and can be easily extended to more complicated engineering applications as a gen-
eral optimization scheme. The recent developments in level set methods [6,24,14,18,25] show that the implicit
(or equivalent) schemes are faster than explicit time-marching schemes applied in standard level set methods.
It is interesting to test all the different schemes to find the best efficient level set method. However, it is difficult
for us to numerically implement and compare all the different schemes with the present semi-implicit level set
method. Hence, this work only focus on the comparison with the popularly studied standard level set method
[48,42,43,60,2]. Further study will be conducted to compare the present semi-implicit level set method with
other level set methods (e.g. [6,24]).
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2. Implicit level set representation

The basic idea behind the level set representation is expressing a curve or surface as the zero level set or
isophote of a high-dimensional function in an implicit manner, and then traces the deformation of the curve
or surface via the evolvement of the higher-dimensional level set function [48]. As shown in Fig. 1a, where D is
a fixed working domain which includes all admissible shapes X (a smooth bounded open set). Fig. 1b is the
level set model showing that a 2D interface can be represented with a 3D scalar level set function, which is
a signed distance function being Lipschitz continuous. Supposing the level set function U(x) is defined as
UðxÞ > 0() 8x 2 X=oX ðinside the domainÞ
UðxÞ ¼ 0() 8x 2 oX ðon the boundaryÞ
UðxÞ < 0() 8x 2 D=X ðoutside the domainÞ

8><
>: ð1Þ
where U(x) > 0, U(x) < 0 and U(x) = 0 denotes the solid, void and boundary, respectively.
In structural optimization, the boundary oX(x) of X(x) is represented as the zero level set
oXðxÞ ¼ fx 2 Rd j/ðxÞ ¼ 0g ðd ¼ 2 or 3Þ ð2Þ

Letting the level set function evolve dynamically in time t with a normal velocity, then the motion of the struc-
tural boundary can be expressed as follows:
oXðtÞ ¼ fUðxðtÞ; tÞ ¼ 0g 8xðtÞ 2 oXðtÞ ð3Þ

Differentiating Eq. (3) with respect to t on both sides yields
oU
ot
þ dx

dt
� rU ¼ oU

ot
þ v � rU ¼ 0 ð4Þ
Consider a normal velocity vn = v � n with an outward defined direction n = $U/|$U|, then the Hamilton–Ja-
cobi PDE can be defined as [48,43]
oUðx; tÞ
ot

þ vnjrUj ¼ 0; Uðx; 0Þ ¼ U0ðxÞ ð5Þ
As a result, the evaluation of the dynamic boundary can be implemented via the level set equation given in (5).
It is noted that both the variations of the reference domain D and the shape boundary oX have been involved.
If the velocity vn on the boundary is known, transporting U by the level set model is equivalent to moving the
boundary oX along the normal direction.

In general, an analytical function for the scalar level set function is unknown. Hence, a numerical procedure
is often indispensable to enable the discrete level set processing, such as an explicit finite difference scheme with
a capturing Eulerian approach [43]. However, as noted in [35], the Hamilton–Jacobi type PDE is rarely easy to
implement. Several numerical considerations should be handled carefully during the numerical implementa-
tion [33], such as the upwind schemes, the reinitilization procedures and the velocity extension algorithms [48].
Fig. 1. Level set description of a two-dimensional design.
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For the explicit time-marching schemes, the time-step size must be sufficiently small to satisfy the CFL con-
dition and guarantee the convergence of the numerical process [48]. With a fixed Eulerian grid, the CFL con-
dition requires the boundary to move no more than one grid size each time. In applying polynomial
interpolation in high dimensions, the mesh grid is required to be sufficiently fine to accurately capture the spa-
tial partial derivative so as to avoid numerical artifacts contaminating the solution [7,15], because only the
continuity of the implicit scalar function rather than its partial derivative can be guaranteed crossing the mesh-
ing grids. The numerical truncation errors related to the polynomial snaking phenomena may lead to a sin-
gular problem as a result of the poor derivative estimation. However, a fine mesh will denote an expensive
computational cost with a large amount of iterations if an explicit scheme is adopted, and too much iteration
will in turn degenerate the numerical stability due to the accumulation of truncation errors. Thus, the CFL
condition should be relaxed as much as possible. Furthermore, the Hamilton–Jacobi PDE is prone to losing
its shape in under-resolved regions [20] or unwanted dissipation of the front [50], leading to a too flat or steep
level set surface. Hence, some numerical schemes are generally required to be included to retain the regularity
of the level set function [18,19,47,58]. A reinitialization procedure is usually included to retain a signed dis-
tance level set function to appropriately capture the geometric shape [43]. It was noted that the global reini-
tialization procedure is usually computational expensive and also prohibit the ‘‘nucleation” of new holes inside
the material domain [13,2]. The final design will become strongly dependent on the initial guess and the opti-
mization may easily run into local minimums [60,24]. Hence, the global reinitializations should be avoided to
save computational cost and also to enable the probability of creating new hole. In addition, the original
velocity field in the Hamilton–Jacobi PDE is evaluated only on the boundary via the shape sensitivity analysis
methods [54,17]. However, to enable the dynamic level set process in a fixed Eulerian grid, the velocity field is
often required to be extended to a narrow band of the boundary or to the entire design domain [2,23,43,48].
Hence, the numerical considerations of the discrete computation limit the application of the level set method
to structural shape and topology optimization.

In this study, the structural boundary is still described as the level set equation by fully taking advantage of
the implicit free boundary representation [32,60,61]. In doing so, we present an alternative level set method for
shape and topology optimization based on a semi-implicit scheme rather than the explicit difference scheme.
3. Shape and topological optimization

In the conventional shape and topology optimization, the problem of structural stiffness design has been
widely studied. With the level set method, the standard notion of the structural design problem of minimum
compliance [12] can be specified as
Minimize : JUðXÞ ¼ 1
2

R
D½DijkleijðuÞeklðuÞ�HðUÞdX

Subject to : aUðu; vÞ ¼ lUðvÞ; 8v 2 U; ujoX ¼ u0

V ðXÞ ¼
R

D HðUÞdX� V max 6 0

8><
>: ð6Þ
where JU is the objective functional and V is the inequality constraint to limit the maximal material usage
Vmax. Here, the solid domain X included in the reference domain D. H(x) is Heaviside function and its deriv-
ative is defined as Dirac function d(x) [48,43].
HðxÞ ¼ 1 if x P 0

0 if x < 0

�
; dðxÞ ¼ dH

dx
ð7Þ
The energy bilinear and the load linear forms aU(u,v) and lU(v) are, respectively, given by
aUðu; vÞ ¼
Z

D
DijkleijðuÞeklðvÞHðUÞdX ð8Þ

lUðv;XÞ ¼
Z

D
fvHðUÞdXþ

Z
D

pvdðUÞjrUjdX ð9Þ
where the elastic equilibrium equation is written in its weak variation form. u denotes the displacement field
and v is virtual displacement field in the space U spanned by kinematically admissible displacement fields, Dijkl
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is the elasticity tensor, e represents the strain tensor, p denotes the body force, f is the boundary tractions ap-
plied on the part oXt of the boundary oX, and u0 is the prescribed displacement on the part oXu of the oX. The
aim of the structural optimization is to find the optimal boundary oX of X, so that the objective function JU(u)
can be minimized for a specific physical or geometric type described by U [60].

In solving the optimization problem (6), the inequality volume constraint is usually difficult to be exactly
satisfied during the level set processing. In the literature, a fixed Lagrange multiplier was appointed to satisfy
the volume constraint [2] despite the fact that the constraint is difficult to be satisfied because the multiplier is
fixed during the entire optimization process. Another approach was under the assumption that the volume
constraint is conservative during the interface propagation [60], but actually the volume cannot be kept con-
servative as the level set surface is prone to leading to the drift of the volume during the optimization process
[20,18]. Therefore, in numerical implementation, it is necessary to accurately calculate the Lagrange multiplier
k (in Eq. (25)) so that the design is always in the feasible domain by pushing the volume violation back. In this
study, the augmented Lagrange multiplier method [37] is used to calculate the Lagrange multiplier k, which is
a mathematically well-founded method being widely used in design optimization community. It has been
proved to be effective in retaining the volume conservative [66].

4. Shape sensitivity analysis

In this section, the concept of the shape derivative [17,29,54] is viewed as a gradient-based method to guar-
antee minimization of optimization problem (6). In the framework of Murat and Simon [36], we employ the
shape derivative to measure the sensitivity of boundary perturbations with respect to pseudo-time by following
a similar way of Wang et al. [60] and Allaire et al. [2]. First, supposing X is a smooth open set, we consider the
following type of domain
X# ¼ ðId þ #ÞðXÞ ð10Þ

where Id is the identity map and #:Rd ? Rd is a small regular mapping operation. Then, if # is sufficient small,
the existence of G(#):C ? C and U(#):C ? R can be ensured. Hence
ðI þ #Þ � Gð#Þ ¼ I þ Uð#Þn; on C ð11Þ

where n:C ? Sd�1 denotes the unit outward normal on C. The objective J(X(t)) is given as
JðXðtÞÞ ¼ JðXÞ þ J 0ðXÞ# � nþ oð#Þ ð12Þ

where J0(X) is the partial derivative with respect to pseudo-time t, namely, the shape derivative or the shape
gradient that is a continuous linear function belonging to W 1;1ðRd ;RdÞ. Considering the integral on the vol-
ume of X or along the boundary of X, we can obtain the following expressions according to [54,17].

If f ðxÞ ¼ W 1;1ðRN Þ and HðXÞ ¼
R

X f ðxÞdx, then the shape derivative of H(X) is defined as
oHðXÞ
ot

¼
Z

X
r � ð#ðxÞf ðxÞÞdx ¼

Z
oX
#ðxÞ � nðxÞf ðxÞds ð13Þ
If f ðxÞ ¼ W 2;1ðRN Þ and HðXÞ ¼
R

oX f ðxÞdx, then the shape derivative of H(X) is defined as
oHðXÞ
ot

¼
Z

oX
#ðxÞ � nðxÞ of ðxÞ

on
þ jf ðxÞ

� �
ds ð14Þ
In terms of the aforementioned definitions, the shape derivatives of JU(X(t)), aU(u,v,X(t)) and lU (v,X(t)) with
the level set representation can be, respectively, expressed as
oJUðXðtÞÞ
ot

¼
Z

D
Dijkleijð _uÞeklðuÞHðUÞdXþ 1

2

Z
D

DijkleijðuÞeklðuÞdðUÞ
oU
ot

dX ð15Þ

oaUðXðtÞÞ
ot

¼
Z

D
Dijkleijð _uÞeklðvÞHðUÞdXþ

Z
D

DijkleijðuÞeklð _vÞHðUÞdXþ
Z

D
DijkleijðuÞeklðvÞdðUÞ

oU
ot

dX ð16Þ

olUðXðtÞÞ
ot

¼
Z

D
½f _vþ divðp _vnÞ�HðUÞdXþ ½fvþ divðpvnÞ�dðUÞ oU

ot
dX ð17Þ
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In addition, the conjugate equation is defined as follows:
Z
D

DijkleijðuÞeklð _vÞHðUÞ ¼
Z

D
½f _vþ divðp _vnÞ�HðUÞdX ð18Þ
Differentiating aU(u,v,X) = lU(v,X) on both sides with respect to t, namely
oaUðu; v;XðtÞÞ
ot

¼ olUðv;XðtÞÞ
ot

ð19Þ
In terms of oU/ot = d(U)|$U|v � n, substituting Eqs. (16)–(18) into (19) yields
Z
D

Dijkleijð _uÞeklðvÞHð/ÞdX ¼
Z

D
½fvþ divðpvnÞ � DijkleijðuÞeklðvÞ�dðUÞjrUjv � ndX ð20Þ
The problem of structural mean compliance is being widely accepted as the self-adjoint problem [60,2], which
indicates
Z

D
Dijkleijð _uÞeklðuÞHðUÞdX ¼

Z
D
½fuþ divðpunÞ � DijkleijðuÞeklðuÞ�dðUÞjrUjv � ndX ð21Þ
By substituting Eq. (21) into (15), the shape derivative of JU(X(t)) is then given as
oJUðXðtÞÞ
ot

¼
Z

D
fuþ divðpunÞ � 1

2
DijkleijðuÞeklðuÞ

� �
dðUÞjrUjv � ndX ð22Þ
Similarly, the shape derivative of the volume constraint can be expressed by
o

ot
V UðXðtÞÞ ¼

Z
D

dðUðxÞÞjrUjv � n dX ð23Þ
In this study, the augmented Lagrangian method is applied to convert the original constrained optimization
problem into an unconstrained problem as follows:
JUðXÞ ¼ JUðXÞ þ k
Z

D
HðUÞdX� V max

� �
þ 1

2K

Z
D

HðUÞ � V max

� �2

ð24Þ
With the augmented Lagrangian multiplier method [8,37], the updating scheme for the Lagrangian multiplier
k relevant to the volume constraint can be obtained as
kkþ1 ¼ kk þ 1

Kk

Z
D

HðUÞ � V max

� �
; Kkþ1 2 ð0;KkÞ ð25Þ
where K is the penalization parameter. In numerical implementation, K is set to a small positive parameter
which is decided as Kk+1 = a*Kk with a < 1. Our numerical tests show that the penalization parameter is stable
for structural topology optimization problems if a can be selected between a = 0.1–0.5. At least, it performs
well for structural stiffness designs. For detailed overview of calculating the Lagrange multiplier, the readers
are referred to the related references (e.g. [9,37]).

Thus, the shape derivative of the augmented objective function J can be worked out as
oJUðXðtÞÞ
ot

¼ o

ot
JUðXðtÞÞ þ

o

ot
k
Z

D
HðUÞdX� V max

� �
þ 1

2K

Z
X

HðUÞ � V max

� �2
( )

¼
Z

D
GðUÞdðUÞjrUjv � ndX ð26Þ

GðUÞ ¼ fuþ divðpunÞ � 1

2
DijkleijðuÞeklðuÞ þ kþ 1

K

Z
D

HðUÞ � V max

� �� �
ð27Þ
In terms of vn = v � n, Eq. (26) can be further written as
oJUðXðtÞÞ
ot

¼
Z

D
GðUÞdðUÞjrUjvn dX ð28Þ
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It is noted that the derivative of the augmented objective form will agree with the derivative of the objective
functional if all the constraints are satisfied. To ensure the decrease of the objective function, a proper velocity
field vn should be selected for the level set function. As indicated in the literature [60,2], the simplest way is to
directly choose a steepest descent direction by letting
vn ¼ �GðUÞ ð29Þ

Thus, the shape derivative can guarantee a descent direction of the objective function
oJUðXðtÞÞ
ot

¼ �
Z

D
G2ðUÞdðUÞjrUjdX 6 0 ð30Þ
In addition, to ensure a smooth design boundary, the normal velocity field can be modified by adding an arti-
ficial regularization term for smoothing purpose [60], namely the velocity field is rewritten as
vN ¼ vn þ bj ð31Þ

where b is a small positive parameter and j = div($U/—$U—) represents the mean curvature in 2D structures
[61].

5. A semi-implicit scheme with AOS algorithm

In this study, we use a semi-implicit AOS method rather than explicit schemes to implement the discrete
level set processing. It was noted that the conventional semi-implicit schemes can satisfy all discrete scale-space
criteria for any time step [26]. But it should be addressed that the numerical procedure for solving higher
dimensions linear system will be significantly less efficient. To overcome this shortcoming, the semi-implicit
AOS scheme is presented in this study as an alternation. The concept of semi-implicit scheme might be firstly
mentioned by [31] and later developed by [67]. The original application of the AOS scheme is to solve nonlin-
ear diffusion equations in image processing and computer vision [67–69]. The basic idea behind the AOS
scheme is to split the m-dimensional spatial operator into a set of one-dimensional space discretizations that
can be efficiently solved with a mathematically well-founded Gaussian elimination algorithm named Thomas
Algorithm [67]. As a result, the final multi-dimensional solution can be approximated via averaging the 1-D
solutions. The semi-implicit AOS scheme inherits several favorable features from their original continuous dif-
fusion process. It treats all coordinate axes equally and can be easily implemented in arbitrary dimensions. In
addition, this scheme is expected to be fast as due to no time step limitation related to the CFL condition. The
computational complexity and memory requirement is linear in the number of pixels.

In the conventional Eulerian method, the nonlinear diffusion filtering problems are usually defined with the
following explicit scheme [67]
ukþ1
i � uk

i

s
¼
Xm

l¼1

X
j2NlðiÞ

gk
j þ gk

i

2h2
l

ðuk
j � uk

i Þ ð32Þ
where the boundary condition is u(x, 0) = u(x), uk
i and gk

i are used to approximate u(xi, tk) and g($ue(xi, tk)),
respectively, Nl(i) is the set of the two neighbors of grid points i along the l directions and m denotes the
dimension of the problems (2 or 3). Thus, in 2D problems, l represents x and y direction, while in 3D cases
it denotes x, y and z direction, respectively. hl is the minimal grid dimension in l direction, and s is the time
step. In matrix–vector notation, the explicit scheme is rewritten compactly as
ukþ1
i � uk

i

s
¼
Xm

l¼1

AlðukÞuk ð33Þ
where Al is the diffusive interaction in l direction, which can be defined as follows:
AðukÞ ¼ aijðukÞ ¼

1
2h2

l
ðgk

j þ gk
i Þ; j 2 NlðiÞ

0; else

�
P

n2NlðiÞ

1
2h2

l
ðgk

j þ gk
nÞ; i ¼ j

8>>><
>>>:

ð34Þ
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In general, the above equation is the so-called explicit scheme because the solution can be directly calculated
without solving a system of equations, but it is well known that the explicit scheme has a strict limitation on
time-marching step size and it is only numerically stable for very small time steps [26,31], which leads to poor
computational efficiency and limits its practical applications.

Keeping this in mind, a semi-implicit scheme originally for nonlinear diffusion equations in image process-
ing and computer version was then presented as an alternation [67–69]. We suppose that a filtered image u(x, t)
for an image u(x) is defined as the solution of the following problem by involving suitable initial state and
boundary conditions
uðx; tÞ ¼ aðxÞr � bðxÞ
jruj ru
� �

þ kuðxÞ; uðx; 0Þ ¼ uðxÞ ð35Þ
In the above equation, u(x, t) represents the filtered scalar image with Gaussian-smoothness, which can be cal-
culated by solving a nonlinear diffusion equation with the original image u(x) as its initial state [68]. Recalling
the definition of the level set function U(x, t) [48,43], and taking a(x) = b, b(x) = 1 and ku(x) = B(x), then we
have the following formulation:
Ut ¼ br � r/
jr/j

� �
þ BðxÞ; Uðx; 0Þ ¼ UðxÞ ð36Þ
where b is the weighting factor for the diffusion term and B(x) is decided by different problems.
Discretizing the system with reflecting boundary conditions, the semi-implicit scheme for the level set func-

tion is initially expressed in matrix–vector notation form as
Ukþ1
i � Uk

i

s
¼
Xm

l¼1

bAlðUkÞUkþ1 þ BðxÞ; U0 ¼ Uðx; 0Þ ð37Þ
Here, the ‘‘semi-implicit” implies that the level set function Uk+1 can not be directly obtained, and we have to
solve a linear system first, which leads to the following expression:
Ukþ1 ¼ I � sb
Xm

l¼1

AlðUkÞ
" #�1

Uk þ sBðxÞ; U0 ¼ Uðx; 0Þ ð38Þ
It was noted that this scheme theoretically guarantees the stability by satisfying all the discrete scale-space for
arbitrary time step sizes s > 0 [67].

To solve the aforementioned problem efficiently, let us consider a modification of the semi-implicit scheme,
namely the additive operator splitting (AOS) scheme [68]
Ukþ1 ¼ 1

m

Xm

l¼1

½I � msbAlðUkÞ��1ðUk þ sBðUÞÞ ð39Þ
where the operators Bl(U
k) = [I � msAl(U

k)] indicate one-dimensional diffusion processes along the xl axes.
Under the condition of a conservative pixel numbering in the l direction, all these operators are composed
of a strictly diagonally dominant tridiagonal linear system. It is noted that the AOS scheme has the same
first-order Taylor expansion in s as the semi-implicit scheme.

Substituting the velocity vN in Eq. (31) into the level set model in Eq. (5) leads to
Ut ¼ bjrUjdiv
rU
jrUj

� �
þ jrUjvN ð40Þ
According to Eqs. (36) and (37), the formulation (40) can be re-expressed as
Ukþ1
i � Uk

i

s
¼ bjrUkj½AlðUkÞUkþ1� þ vN jrUkj ð41Þ
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Then, with the AOS scheme given in Eq. (39), the level set function U can be updated in terms of the following
manner:
Ukþ1 ¼ 1

m

Xm

l¼1

½I � msbjrUkjAlðUkÞ��1½Uk þ sðvN ðxÞjrUkjÞ� ð42Þ
with the definition of Al(U
k) = aij(U

k), and aij(U
k) can be expressed as
aij ¼

1
h2

l

2
ðjrUjki þjrUjkj Þ

; j 2 N lðiÞ

0; else

� 1
h2

l

P
n2NlðiÞ

2
ðjrUjki þjrUjknÞ

; i ¼ j

8>>><
>>>:

ð43Þ
The operator A can be spilt into two components in x and y directions (2D), respectively, as
A1 ¼
o

ox
1

jrUjk
o

ox

 !
; A2 ¼

o

oy
1

jrUjk
o

oy

 !
ð44Þ
In numerical implementation, the level set function U can be updated as
Ukþ1 ¼ 1

2
½ðI � 2sbA1ðUkÞÞ�1 þ ðI � 2sbA2ðUkÞÞ�1�½Uk þ svN ðxÞjrUkj� ð45Þ
To simplify the above equation, let
W1ðUÞ ¼ ðI � 2sbA1ðUkÞÞ�1½Uk þ svN ðxÞjrUkj� ð46Þ
W2ðUÞ ¼ ðI � 2sbA2ðUkÞÞ�1½Uk þ svN ðxÞjrUkj� ð47Þ
Then, W1(U) and W2(U) can be easily solved with the following equations using the Thomas method as a Gauss-
ian elimination algorithm for tridiagonal systems [67].
½I � 2sbA1ðUkÞ�W1ðUÞ ¼ Uk þ svN ðxÞjrUkj ð48Þ
½I � 2sbA2ðUkÞ�W2ðUÞ ¼ Uk þ svN ðxÞjrUkj ð49Þ
With many numerical demonstrations, we can find that the AOS scheme is at least as ten times efficient as the
widely used explicit schemes under appropriate requirements. The AOS scheme does not suffer from any prac-
tical time step size restriction due to total relaxation of the CFL condition, but it suggested that in practice it is
unnecessary to use an impractically large time step, as it will lead to poor rotation invariance in nonlinear dif-
fusion problems [67]. Strictly speaking, the AOS scheme is numerically not unconditionally stable due to the
linearization used in the scheme. Hence, selecting the time step needs a practical consideration, this is because
a too large time step will influence structural topology complexity and will cause oscillations from the large
changes of the structure volume. In any sense, the present scheme can really enable a larger time step and
can eliminate the time-consuming reinitialization procedures.

6. Numerical implementation

6.1. Numerical skills

In level set-based structural topology optimization method, the structural geometric boundary to be opti-
mized is described as the zero level set of U(x, t) = 0. In its numerical implementation, after obtaining the
nodal value of the level set function using the AOS scheme, the level set function U can be represented in
any convenient form as long as it can satisfy the basic requirement [48]. In this work, the finite element method
is employed in discrete level set processing with the Heaviside function defined as follows [60]:
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HðxÞ ¼
0; x < �g
1
2

1þ x
gþ 1

p sin px
g

� �h i
; jxj 6 g

1; x > g

8><
>: ð50Þ
where g is a parameter used to determine the size of the bandwidth for the purpose of numerical smoothness.
In our research, it is selected as 0.5 times of the minimum grid width.

To facilitate numerical process using the standard finite element method, the strain field can be calculated
without time-consuming remeshing procedure by using the popular and simple ‘‘ersatz material” method [2].
In the ‘‘ersatz material” scheme, the void holes inside the design domain is filled with a weak material and the
element stiffness crossing the boundary is handled under the assumption that it is approximately proportional
to the area-fraction of solid materials.

As aforementioned, the AOS method can be regarded as a time stable semi-implicit scheme to solve the
level set equation which is mathematically defined as the Hamilton–Jacobi PDE. However, in numerical
implementation, a practical max–min constraint should be included in calculating |DU| so as to guarantee
the numerical stability, which can be defined as
jrUj ¼ minð1e4;maxðjrUj; 1e� 4ÞÞ ð51Þ

In addition, we also need to regularize the velocity field [60] by letting
vN ¼ vN=maxðjvN jÞ ð52Þ
6.2. Numerical examples

Two widely studied examples in structural topology optimization are used to illustrate the potentials of the
present semi-implicit level set method. In all the examples, an artificial material is adopted only for the sake of
simplicity [52]. However, it is straightforward to apply the present semi-implicit level set method to structural
shape and topology optimization problems including any kinds of engineering materials. The units of all the
parameters can be defined flexibly, but they should remain unchanged during all different stages such as for-
mulation modeling, numerical calculation and optimization procedure. In this research, the material proper-
ties are defined as: Young’s modulus for solid component is E = 1 and for weak part is E = 0.0001, and the
Poisson ratio for all the materials is m = 0.3. The level set function is initially embedded as a signed distance
function, but no reinitializations are required in the rest of iterations. The termination criterion of iteration is
the relative difference of the objective function values between two successive iterations is less than 0.0015.

6.2.1. Michell type structure

The well-known Michell type structure with a length and width ratio of 2:1 is used as the first numerical
case. The reference domain and the initial design of the structure are shown respectively in Figs. 2 and 3.
The structure is loaded with a concentrated vertical force of F = 1 at the centre of the bottom edge, and it
Fig. 2. Design domain with boundary condition.



Fig. 3. The initial design of Michell type structure.
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is supported on rollers at the bottom-right corner and on fixed supports at the bottom-left corner. The design
domain is discretized with 80 � 40 finite elements. The Lagrange multiplier is correspondingly updated
together with the level set function, and the positive number is selected as K = 0.1. For comparison purpose,
the initial design displayed in Fig. 3 is optimized by using the proposed semi-implicit AOS scheme and the
standard explicit scheme [60], respectively.

Fig. 4 illustrates the designs in different stages of the optimization process using the semi-implicit AOS
scheme with a time step Ds = 15 and a mean curvature coefficient b = 1e�6. The final design shown in
Fig. 4f is obtained after 60 iterations. To benchmark the present level set method, we also apply the explicit
time-marching (upwind) scheme [34] to solve the same initial design with the same convergent tolerance. From
the designs displayed in Fig. 5, one can find that the two different schemes can lead to similar designs. How-
ever, to ensure the stability of the explicit scheme, the time step size in upwind method has to be set to 0.5 in
the numerical process in order to meet the CFL condition as recommended in the literature [60,2]. Fig. 5f
shows the final design obtained after 1162 iterations. The results obtained with the two different difference
schemes are listed in Table 1, respectively, where N is the total number of steps, Ts denotes the total time
of the optimization, tls is the average time of one the level set iteration, and tFEM is the average time of
one FEM iteration.

In Table 2, it can be seen that the present algorithm with AOS scheme is more efficient than the conven-
tional or standard level set method with explicit schemes, because the present semi-implicit scheme is mostly
time-stable for any time step sizes, thus allowing a bigger time step. In the AOS scheme, the only thing in
selecting the time step is a practical consideration, as we addressed previously. A time step which is imprac-
tically large will influence the topological complexity of the final design [27]. At the same time, if a too big time
step size is applied, our numerical tests show that the objective function and the volume ratio may experience
slight oscillation, in particular, near the optimal point. Perhaps, the reason being responsible for this phenom-
Fig. 4. Designs using the semi-implicit AOS scheme.



Fig. 5. Designs using the explicit upwind scheme.

Table 1
Comparison of the explicit upwind and the semi-implicit AOS scheme

Schemes J (X) tls (s) tFEM (s) N Ts (s)

AOS scheme 18.690 0.01 5.12 60 326.74
Upwind scheme 19.635 0.1 5.09 1162 1256.73

Table 2
Results of the different designs

Initial design J (X) (objective) Ts (s) (total time) N (iterations)

Fig. 8a with seven holes 75.46 636.64 120
Fig. 9b with three holes 78.54 933.46 183
Fig. 10c without hole 77.87 1297.75 257

J. Luo et al. / Journal of Computational Physics 227 (2008) 5561–5581 5573
enon is that a very large time step will lead to an abrupt change of the structure volume. Hence, the pre-knowl-
edge from a few numerical tests is generally required in order to determine a more suitable time step in
advance, if the present level set method is applied.

In the numerical implementation, it was noticed that the computational cost for the FEA analysis is more
expensive than the Hamilton–Jacobi PDE [60]. In the conventional level set method, the level set surface (in
2D) is advanced slowly with very small time steps due to the consideration of the CFL condition. Hence, to
reduce the FEA cost, only one FEA subroutine is often performed every five level set evolvements [2]. How-
ever, in the present semi-implicit AOS scheme, the FEM analysis is performed together with the level set
motion every time, because the present scheme enables a quick evolvement of the level set surface via a much
bigger time step size. However, the total time of the present level set method with the AOS scheme is still much
less than the conventional level set method.

Fig. 6a shows that the convergent curves of the objective function and the volume ratio. At first appear-
ance, it seems that the objective function is optimized in opposite direction being inconsistent with what we
have expected, but it is truly reflect the changing tendency of the objective function during the entire optimi-
zation process. It can be found that the strain energy of the objective function gradually increases from 12.790
to 22.532 in the initial 30 iterations, which is in fact due to the violation of the volume constraint at the initial
stage. After that, the objective function smoothly decreases from 22.532 to 18.690 until the design converges to
a (local) minimum. The volume constraint of the present method can be exactly satisfied after the 30th iter-
ation, which shows that the augmented Lagrange method can be applied to make the volume conservative.
Fig. 6b displays the optimization histories of the objective function and the volume constraint when the



Fig. 6a. The strain energy and the volume ratio with the AOS scheme.

Fig. 6b. The strain energy and the volume ratio with the upwind scheme.
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conventional level set method with explicit upwind scheme is employed. In the initial 421 iterations, the strain
energy of the objective function increases from 12.709 to 23.160, and then followed with a descent from 23.160
to 19.635.

6.2.2. Cantilever beam

The design domain of a cantilever beam is shown in Fig. 7. The design domain D is discretized with a rect-
angle of size 2 � 1 with a fixed boundary on the left side, and a unit vertical load F is applied at the bottom
point of the right side. This example is applied to illustrate some other characters of the semi-implicit AOS
scheme in the level set-based structural shape and topology optimization. In all the numerical cases, we use
a quadrilateral mesh of 80 � 40 elements, the mean curvature coefficient and the time step size for the AOS
scheme will be addressed.

(1) Influence of different initial designs
In the conventional level set method [60,2], in order to obtain a meaningful design, the number of the holes
positioned inside the initial design should be topologically sufficient to include all the possible shape con-
figurations. However, in the conventional level set method, no mechanisms have been included to create
new holes inside the material domain [4,13,62]. Hence, the final design becomes strongly dependent on



Fig. 7. The cantilever beam boundary condition.
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the initial guess, and the design will be easily trapped into local minima. Perhaps, many reasons can be
responsible for the prohibition of generating new hole inside the design domain [32]. As far as the level
set method with the Hamilton–Jacobi PDE is concerned, a widely recognized reason is that the continu-
ously applied reinitializations for the level set surface (in 2D) has disabled ‘‘nucleation” of the new holes
[60,2]. To some extent, in the present method, the global reinitializations can be eliminated, and the velocity
field is being naturally extended over the entire design domain and the shape gradient is also evaluated on
the whole domain.
According to our engineering knowledge, the number of seven holes positioned in the initial design in Fig. 8
should be sufficient to illustrate all the topological configurations. The final design in Fig. 8 is similar to the
design obtained using SIMP approach [52] or the conventional level set method [60]. In Fig. 9, the three
holes are insufficient topologically to describe a well accepted optimal solution. However, due to the present
method being able to create new holes freely, the optimization processing finally leads to a similar design
being achieved via adding and deleting holes freely during the optimization. To further demonstrate the
capability of the present method, the optimization is performed without putting any hole in the initial
design. In Fig. 10, from the optimization procedure, it can be found that the present level set method
can freely generate new holes inside the design domain. As a result, a final design in Fig. 9 is achieved with
a similar topology as the previous two cases in Figs. 7 and 8. Thus, these three different initial cases can
result in similar designs via simultaneous shape fidelity and topological changes. The reason is that the level
set method in this paper can create new holes flexibly inside the design domain, which makes the final
design highly independent of the initial design. Therefore, the present method with the AOS scheme is
Fig. 8. Design in different stages with seven holes in the design domain.



Fig. 9. Design in different stages with three holes in the design domain.

Fig. 10. Design in different stages with three holes in the design domain.
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promising for structural shape and topology optimization problems. The results of the different designs are
shown in Table 2.
For the conventional level set method using the explicit upwind scheme, it is well known that the initial
design has an obvious influence on the final design because the optimization process can not introduce
new holes. To overcome the shortcoming, a bubble [21] or topological gradient method [13] is often incor-
porated into the level set method for the purpose of inserting new holes in the design domain. But it was
noted that it would be difficult to switch physically between the topological derivative and the shape deriv-
ative in an automatic manner [62,4]. In this sense, the ability of the creation of new holes (at least in 2D) by
merging or splitting the boundary can be regarded as a main advantage of the present level set method over
the conventional or standard level set method [60,2]. In addition, the present scheme dose not need to per-
form periodical reinitializations to retain the regularization of the level set surface.
(2) Influence of the curvature coefficient
In the semi-implicit AOS scheme, the curvature coefficient b is an important parameter. Hence, three
numerical cases are used to demonstrate the influence of the curvature coefficient b on final designs. All
the optimization results are obtained by using the same initial design with a quadrilateral mesh of
80 � 40 and a step size of 1. The optimal results and relevant topologies are shown in Table 3, where b
is the coefficient of the curvature, N represents the number of total iterations and Ts denotes the total time.



Table 3
Results with different curvature coefficient

Initial design J (X) b Ts (s) N Final design

74.94 1e�7 3875.53 746

76.46 1e�6 1721.47 352

78.64 1e�5 527.43 110
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From Table 3, it can be seen that the different curvature coefficients will result in the different final designs.
Hence, the curvature coefficient in the semi-implicit AOS scheme has a notable influence on final designs.
The numerical results indicates that the larger the coefficient, the simpler the topology of the final design,
and the faster the convergence speed. So the curvature coefficient may also be called perimeter constraint
similar to that in the reference [61].

6.2.3. Influence of the step size
In solving the Hamilton–Jacobi PDE with the semi-implicit AOS scheme, another important parameter is

the time step size Ds. We apply three different numerical cases to explore the influence of the time step on final
design. The same initial design with a quadrilateral mesh of 80 � 40 and a mean curvature coefficient of 1e�6
is adopted. The optimal results are listed in Table 4. It can be seen that the time step size in the AOS scheme
has an obvious influence on the final designs. As aforementioned, the semi-implicit AOS scheme is stable with
all time steps, and this statement is meaningful only with respect to the time-marching schemes for the Ham-
ilton–Jacobi PDE. Although the present method is free from time step restriction on solving initial value prob-
lems, this numerical test displays that the time step really has an impact on the final designs. As a matter of
fact, the observation on s is easy to understand because s used in the AOS scheme has a role similar to the
Table 4
Results with different step size

Initial design J (X) s Ts (s) N Final result

73.57 0.5 3806.67 750

75.47 5 1012.43 193

78.32 15 512.52 102



Table 5
Results with different step size

Initial design J (X) mesh Ts (s) N Final design

74.96 80 � 40 616.6 136

74.68 120 � 60 10881.5 386

74.84 160 � 80 20516.8 637
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moving limit in the SIMP approach [27,52]. In general, a too large step size may weaken the capability of the
optimization method in describing topologies of sub-structures in optimization process. In particular, it may
remove the basic structure to have included the optimal topology configuration within the initial iterations. In
Table4, it is evident that larger time step size yields a final design of simpler topology. The larger the step size,
the larger the change in the nodes’ values of the level set function, and then the simper the final topology.

To demonstrate the influence of the grid refinement on the final design, the design domain is discretized
with 80 � 40 = 3200, 120 � 60 = 7200 and 160 � 80 = 12800 elements, respectively. The three numerical cases
are performed with Ds = 10 and b = 1e�6, and the related results are shown in Table 5. The numerical results
in Table 5 show that consistent designs can be obtained with different level of grid refinements. In numerical
implementation, the grid should be sufficiently fine to capture the spatial partial derivative of the scalar func-
tion crossing meshing grids, thus avoiding numerical artifacts contaminating the solution [7,18]. As far as
explicit schemes are concerned, a fine spatial mesh indicates a large amount of iterations to fully advance
the level set processing because of consideration of the CFL condition [60,2]. However, too much iteration
will in turn degenerate the numerical stability due to the accumulation of truncation errors which is caused
by the polynomial snaking phenomena. It was reported that the grid refinement scheme can enhance the pos-
sibility of finding a global minimum [6,25]. However, regarding the structural optimization problems, in gen-
eral, it is difficult to obtain global solutions in most cases due to the nonconvexity of optimization problems
[12], even if some mathematical programming methods [56] can ensure a series of strictly convex sub-optimi-
zation problems. The numerical results in Table 5 demonstrate that the present level set method can apply
different meshes to produce consistent designs similar to widely accepted topology [12], but there is no guar-
antee that the present level set method can lead to a ‘‘global” optimum. In the present method, it can be seen
that the length of time step size is not restricted by minimum spatial grid size, and the different grid levels can
yield the similar final designs with the same step sizes. Thus, the present semi-implicit level set method is free
from the CFL condition and also it is stable for all time step sizes.

7. Conclusion

In this paper, a semi-implicit level set method has been presented for structural shape and topology opti-
mization. The semi-implicit AOS algorithm is being stable for all time steps and without strict restriction
related to the satisfaction of the CFL condition. As a result, in solving the Hamilton–Jacobi PDE, the present
method can obviously increase the computational efficiency of the topology optimization process, because the
present semi-implicit scheme can totally relax the CFL condition relevant to the explicit time-marching
schemes. With a natural extension of the velocity field, the shape sensitivity is evaluated in the entire design
domain. Furthermore, in the standard level set method, the global reinitialization procedure has been utilized
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as a time-consuming process to regularize the level set function periodically in the neighbor of the front, in
order to retain a signed distance function to stabilize the numerical process. However, the proposed level
set method has the capability of creating new holes inside the material domain via the boundary merging
and splitting, leading to the final design being independent of the initial guess. This can be regarded as a main
advantage of the present level set method over the standard level set methods. Therefore, as the numerical
cases show, the method in this paper can avoid the unfavorable numerical features occurred in the standard
level set method. The proposed level set method has reasonably included the advantages of the implicit level-
set boundary representation and the semi-implicit AOS scheme. Furthermore, this method can be regarded as
a general and a mathematically well-founded method for structural shape and topology optimization prob-
lems, and it can be easily and straightforwardly extended to more advanced optimization problems including
complicated objective function and multiple constraints.
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